[1] Fallah A, Mokhtari A, Ozdaglar A. Personalized feder
ated learning with theoretical guarantees: A model-agn
ostic meta-learning approach[J]. Advances in Neural In
formation Processing Systems, 2020, 33: 3557-3568.
[2] 顾永跟,高凌轩,吴小红,等.非独立同分布下联邦半监督
学习的数据分享研究[J].计算机工程,2024,50(06):188-19
6.DOI:10.19678/j.issn.1000-3428.0067926. Gu Yonggen,
Gao Lingxuan, Wu Xiaohong, et al. Research on Dat
a Sharing for Federated Semi-Supervised Learning und
er Non-Independent and Identically Distributed Settings
[J]. Computer Engineering, 2024, 50(06):188-196.DOI:
10.19678/j.issn.1000-3428.0067926.
[3] Huang Y, Chu L, Zhou Z, et al. Personalized cross-sil
o federated learning on non-iid data[C]//Proceedings of
the AAAI Conference on Artificial Intelligence. 2021,
35(9): 7865-7873.
[4] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust
federated learning through personalization[C]//Internatio
nal Conference on Machine Learning. PMLR, 2021: 6
357-6368.
[5] McMahan B, Moore E, Ramage D, et al. Communicat
ion-efficient learning of deep networks from decentrali
zed data[C]//Artificial Intelligence and Statistics. PML
R, 2017: 1273-1282.
[6] Duan M, Liu D, Chen X, et al. Self-balancing federat
ed learning with global imbalanced data in mobile sys
tems[J]. IEEE Transactions on Parallel and Distributed
Systems, 2020, 32(1): 59-71.
[7] Huang Y, Chu L, Zhou Z, et al. Personalized cross-sil
o federated learning on non-iid data[C]//Proceedings of
the AAAI Conference on Artificial Intelligence. 2021,
35(9): 7865-7873.
[8] Ghosh A, Chung J, Yin D, et al. An efficient framew
ork for clustered federated learning[J]. Advances in N
eural Information Processing Systems, 2020, 33: 1958
6-19597.
[9] Sattler F, Müller K R, Samek W. Clustered federated
learning: Model-agnostic distributed multitask optimizat
ion under privacy constraints[J]. IEEE Transactions on
Neural Networks and Learning Systems, 2020, 32(8):
3710-3722.
[10] Collins L, Hassani H, Mokhtari A, et al. Exploiting s
hared representations for personalized federated learnin
g[C]//International Conference on Machine Learning. P
MLR, 2021: 2089-2099.
[11] Shamsian A, Navon A, Fetaya E, et al. Personalized f
ederated learning using hypernetworks[C]//International
Conference on Machine Learning. PMLR, 2021: 948
9-9502.
[12] Ma X, Zhang J, Guo S, et al. Layer-wised model agg
regation for personalized federated learning[C]//Proceed
ings of the IEEE/CVF Conference on Computer Visio
n and Pattern Recognition. 2022: 10092-10101.
[13] Xing S, Ning Z, Zhou J, et al. N-fedavg: Novel feder
ated average algorithm based on fedavg[C]//2022 14th
International Conference on Communication Software
and Networks (ICCSN). IEEE, 2022: 187-196.
[14] Zhang H, Wu T, Cheng S, et al. Cc-fedavg: Computat
ionally customized federated averaging[J]. IEEE Intern
et of Things Journal, 2023.
[15] Zhou Y, Ye Q, Lv J. Communication-efficient federate
d learning with compensated overlap-fedavg[J]. IEEE
Transactions on Parallel and Distributed Systems, 2021,
33(1): 192-205.
[16] Sun T, Li D, Wang B. Decentralized federated averagi
ng[J]. IEEE Transactions on Pattern Analysis and Mac
hine Intelligence, 2022, 45(4): 4289-4301.
[17] Lai W, Yan Q. Federated learning for detecting COVI
D-19 in chest CT images: a lightweight federated lear
ning approach[C]//2022 4th International Conference o
n Frontiers Technology of Information and Computer
(ICFTIC). IEEE, 2022: 146-149.
[18] 金彪,李逸康,姚志强,等.GenFedRL:面向深度强化学习
智能体的联邦学习框架[J/OL].通信学报,1-15[2024-06-2
8]. Jin Biao, Li Yikang, Yao Zhiqiang, et al. GenFed
RL: A Federated Learning Framework for Deep Reinf
orcement Learning Agents [J/OL]. Journal of Commun
ications, 1-15 [2024-06-28].
[19] Achituve I, Shamsian A, Navon A, et al. Personalizedfederated learning with gaussian processes[J]. Advanc
es in Neural Information Processing Systems, 2021, 3
4: 8392-8406.
[20] Yang X, Huang W, Ye M. Dynamic personalized fede
rated learning with adaptive differential privacy[J]. Ad
vances in Neural Information Processing Systems, 202
3, 36: 72181-72192.
[21] Yang F E, Wang C Y, Wang Y C F. Efficient model
personalization in federated learning via client-specific
prompt generation[C]//Proceedings of the IEEE/CVF I
nternational Conference on Computer Vision. 2023: 19
159-19168.
[22] Yuan L, Su L, Wang Z. Federated Transfer–Ordered–P
ersonalized Learning for Driver Monitoring Application
[J]. IEEE Internet of Things Journal, 2023, 10(20): 18
292-18301.
[23] 朱素霞,顾玢珂,孙广路.基于相似度加速的自适应聚类
联邦学习[J].通信学报,2024,45(03):197-207. Zhu Suxia,
Gu Fanke, Sun Guanglu. Adaptive Federated Learnin
g Based on Similarity Acceleration for Clustering [J].
Journal of Communications, 2024, 45(03): 197-207.
[24] 汤凌韬,王迪,刘盛云.面向非独立同分布数据的联邦学
习数据增强方案[J].通信学报,2023,44(01):164-176. Tan
g Lingtao, Wang Di, Liu Shengyun. Data Augmentatio
n Scheme for Federated Learning Targeting Non-Indep
endent and Identically Distributed Data [J]. Journal of
Communications, 2023, 44(01): 164-176.
[25] Shamsian A, Navon A, Fetaya E, et al. Personalized f
ederated learning using hypernetworks[C]//International
Conference on Machine Learning. PMLR, 2021: 948
9-9502.
[26] Yang Z, Xia W, Lu Z, et al. Hypernetwork-based phy
sics-driven personalized federated learning for CT ima
ging[J]. IEEE Transactions on Neural Networks and L
earning Systems, 2023.
[27] Li H, Cai Z, Wang J, et al. Fedtp: Federated learning
by transformer personalization[J]. IEEE Transactions
on Neural Networks and Learning Systems, 2023.
[28] Jinliang N. Cifar10 image classification based on Res
Net[J]. Системный анализ в проектировании и упра
влении, 2019, 23(1):412-415.
[29] Singla S, Singla S, Feizi S. Improved deterministic l2
robustness on CIFAR-10 and CIFAR-100[J]. arXiv pr
eprint arXiv:2108.04062, 2021.
[30] Cohen G, Afshar S, Tapson J, et al. EMNIST: Extend
ing MNIST to handwritten letters[C]//2017 Internationa
l Joint Conference on Neural Networks (IJCNN). IEE
E, 2017: 2921-2926.
[31] Xiao H, Rasul K, Vollgraf R. Fashion-mnist: a novel
image dataset for benchmarking machine learning algo
rithms[J]. arXiv Preprint arXiv:1708.07747, 2017.
[32] McMahan B, Moore E, Ramage D, et al. Communicat
ion-efficient learning of deep networks from decentrali
zed data[C]//Artificial Intelligence and Statistics. PML
R, 2017: 1273-1282.
[33] Li X, Jiang M, Zhang X, et al. Fedbn: Federated lear
ning on non-iid features via local batch normalization
[J]. arXiv Preprint arXiv:2102.07623, 2021.
|